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Temporal modulation of the control parameter in electroconvection
in the nematic liquid crystal 152
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I report on the effects of a periodic modulation of the control parameter on electroconvection in the nematic
liquid crystall52. Without modulation, the primary bifurcation from the uniform state is a direct transition to
a state of spatiotemporal chaos. This state is the result of the interaction of four degenerate traveling modes:
right and left zig and zag rolls. Periodic modulations of the driving voltage at approximately twice the traveling
frequency are used. For a large enough modulation amplitude, standing waves that consist of only zig or zag
rolls are stabilized. The standing waves exhibit regular behavior in space and time. Therefore, modulation of
the control parameter represents a method of eliminating spatiotemporal chaos. As the modulation frequency is
varied away from twice the traveling frequency, standing waves that are a superposition of zig and zag rolls,
i.e., standing rectangles, are observed. These results are compared with existing predictions based on coupled
complex Ginzburg-Landau equations.

PACS numbd(s): 05.45.Jn, 47.54-r

[. INTRODUCTION A fundamental theory of electroconvection, the weak elec-
trolyte model[6,7], exists and provides the necessary starting
When a spatially extended system is driven far from equipoint for aquantitativederivation of the relevant amplitude
librium, a series of transitions occurs as a function of theequationg8]. Therefore, this system is an ideal candidate for
external driving force, or control paramefdd. Under well-  studying spatiotemporal chaos. However, currently only two
controlled conditions, the initial transition is from a spatially of the four necessary amplitude equations have been derived
uniform state to a state with periodic spatial variations,and only qualitative predictions exig8]. In this work, | use
called a pattern. As the control parameter is increased, temporal modulation as a probe of the system’s dynamics.
sequence of instabilities occurs that produces increasinglyhis provides both a test of the existing amplitude equation
complex spatiotemporal patterns. Ultimately, the system bedescription and a means of guiding future experiments and
comes fully turbulent. States of spatiotemporal chaos forntalculations.
an interesting class of patterfi,2]. Loosely speaking, spa- For electroconvectiof9,10], a nematic liquid crystal is
tiotemporal chaos refers to deterministic patterns that possegtaced between two properly treated glass plates so that the
apparently random variation in space and time. They genewdirector is everywhere parallel to the plates and along a cho-
ally exhibit an underlying periodicity but are characterizedsen axis. A nematic liquid crystal is a fluid in which the
by a finite correlation length and correlation time. Since theirmolecules have orientational order, and the director refers to
discovery in fluid dynamical systenm3], states of spatiotem- the axis parallel to the average alignment of the molecules
poral chaos have been observed in a wide range of systeni4,1]. The liquid crystal is doped with ionic impurities, and an
including Rayleigh-Beard convection, Faraday instabilities, ac voltage is applied across the sample using transparent
Taylor-Couette flow, electroconvection in nematic liquid electrodes on the glass plates. Above a critical value of the
crystals, lasers, and chemical reactidis2]. Despite the applied voltage, there exists a transition from uniform con-
ubiquitous nature of the phenomenon, a full understanding ofluction to convection rolls, with a corresponding periodic
spatiotemporal chaos remains one of the outstanding probariation of the director and concentration of ionic impuri-
lems in nonlinear dynamics. ties. Because the system is anisotropic, the patterns can be
One of the challenges facing the study of spatiotemporatharacterized by the anglé between the director and the
chaos is the difficulty associated with characterizing the dywave vector of the pattern. Electroconvection in the nematic
namics[1]. Because the systems are spatially extended, theljguid crystall52 exhibits a forward Hopf bifurcation to ob-
are inherently high dimensional. This precludes the use ofique rolls [5]. A Hopf bifurcation is a transition to a
many of the successful techniques developed to study lowtraveling-wave pattern, and oblique rolls correspond to pat-
dimensional chaos in dynamical systepd$ Also, most ex-  terns where 0% #<<90° [9]. At the onset, because the direc-
amples of spatiotemporal chaos occur at sufficiently largdor only defines an axis and not a positive direction, states
values of the control parameter that weakly nonlinear techwith wave vectors of equal magnitude but with angfeand
nigues, such as amplitude equations, are only applicable as— ¢ are degenerate and referred to as zig and zag rolls,
phenomenological models, if at all. The work reported heraespectively. The state close to onset that is studied here
uses a state of spatiotemporal chaos that occurs in electroensists of four modes: right- and left-traveling zig and zag
convection inl52[5]. In contrast to other systems, this staterolls [5]. It is the interaction of these four modes that results
does occur in the weakly nonlinear regime where quantitain spatiotemporal chaos.
tive comparison between theory and experiment is possible. Resonant modulation of the control parameter in a system
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with a Hopf bifurcation is known to stabilize standing wavesFor the commercial cell, the critical voltage was approxi-
for large enough modulation strendgth2—17. However, it  mately 15 V and the Hopf frequency was approximately 0.34
has not been applied previously to a state of spatiotemporadz at an applied frequency of 25 Hz.
chaos. There are three main questions addressed in this work. |t is known for electroconvection ih52 that the level of
First, | have made a survey of the range of existence ofodine in the sample will drift in time. This results in drifts in
standing-wave patterns and their qualitative features for gne critical voltage and the Hopf frequency. Because of this
reasonable set of values of the applied voltage, applied freyift, the following protocols were used. The critical voltage
guency, the modulation strength, and. the mod.ulat|on freang Hopf frequency were measured before and after every
ﬂﬁﬁ,ﬁy sstaelsgirr]% :gﬁ:;(eorﬁlgf ;?gregr pZOaSgSItI:’)CI)?ISSt:rnedIS?e-;v;’:{[e S8&t of measurements. The modulated voltage had the follow-
standing rectanglegsuperimposed zig and zag rolls with g}g];?]rsr:;n\lg(st;_CE)\:]‘E;;IVg:;Sn%gz]rgo;gtz)zf\;]f_t\l’voar:ga;n
equal amplitudg and standing cross rollzig and zag rolls . . o ¢

=V,,/V.. HereV, is the critical voltage for the onset of

with different amplitudep[17]. | will show that the standing- c- T ° - O
wave states are generally standing rolls, but that standin?or“’ecuon in the absence of modulation. The driftinwas

rectangles can be observed. Finally, | will demonstrate thafin€ar in time and corresponded to a drift énof 0.001/Hr.

the standing-roll states are temporally regular and that theyhis drift is accounted for in all reported valuestwénde.

eventually become spatially uniform. Therefore, this is anThe modulation frequency will be discussed in terms of the

example of the elimination of spatiotemporal chaos and proshift from resonancef¢ — f,/2), wheref ;, is the modulation

vides an interesting contrast to systems where tempordfequency and™* is the natural frequency of the pattern. For

modulation produces irregular behavior in an otherwise regue<0, f* is the Hopf frequency,,, and fore>0, it is the

lar system[15,18]. frequency of the pattern in the absence of modulation. De-
The rest of the paper is organized as follows. Section lispite the differences between the two cells and the drift in

provides the details of the experimental techniques. Sectiofime of V., the behavior as a function df, €, and (*

Il presents the eXperimental results. In this SeCtion, | Wlll_fm/2) is Comp|ete|y reproducib|e_ The Samp|e temperature

report separately on the results of applying modulations ofyas held constant at either 2@.002°C or 42-0.002°C.

the control parameter be_zlovv_ and above the critical vol_tagq—he latter temperature was used after the total drif¢irat
for the onset of convection in the absence of modulatlons40°C had exceeded approximately 1 V

Section IV will discuss the relationship between these results

- " : ) Images were taken using a standard shadowgraph method
and existing predictions of relevant amplitude equations.

[21] and are presented here with the undistorted director
aligned in the horizontal direction. Because of the well-
Il. EXPERIMENT DETAILS known nonlinear effects of the shadowgraph methad],

the images have been Fourier-filtered so that only the funda-
mental modes are present. This is essential for highlighting
the standing-wave character of the modulated pattern.

The frequency of the pattern was determined by taking
e Fourier transform of a time series of 32 images. The
images typically covered a spatial area containing 18 rolls,
though smaller regions of only seven rolls were also used.
a’he time between images was chosen so that the time series
covered four to six periods of the fundamental frequency.
This cell had a thickness of 2&m. The electrode was a For the measurements of the dynamics of the local ampli-
1.0 cmx1.0 cm area of ITO in a 2.5 cm2.5 cm cell. tude of each mode, a time series of 32 images was used. The
The alignment was also due to a rubbed polyimide coatinglime between images was chosen so that the series consisted

For both cells, there was some forcing of a pattern due t®f four cycles of the pattern. Each image covered a spatial
fringing fields at the edge of the electrodes. However, a rearea of approximately seven wavelengths. The modulus
gion existed in the middle of each cell where convectionsquared of the space-time Fourier transform of the series,
started spontaneously. All measurements were made in th§(k,»), was used to compute the amplitude of each mode.
region of the cell to minimize boundary effects. The power in each mode, right- and left-traveling zig and zag
The main differences between the two samples were theolls, was determined by summigfk, ) over a 5<5 pixel
values of the critical voltage and the Hopf frequency due tagrid in wave number space and 5 pixel window in frequency
differences in iodine doping. The custom sample was filledspace. The grid and window were centered on the peak in
with 152 that had been doped with 6.3% by weight molecu-S(k,w) that corresponded to the mode of interest. The am-
lar 1, two months prior to filling the cell. The commercial plitude of each mode is the square root of the power.
cell was filled with 152 that had been doped with 6% by  For measurements of the onset of standing wavesas
weight molecular, seventeen months prior to filling. The fixed and the value ob was either stepped up or down in
custom cell was aged for five months after filling beforeincrements of 0.005. At each step, the system was equili-
experiments were started, and the commercial cell was agdatated for 10 min before a time series of images was taken.
for one month after filling. For the custom cell, the critical The time series of images were used to determine if the
voltage was approximately 21 V and the Hopf frequency wagpattern was frequency-locked to the modulation and whether
approximately 0.125 Hz at an applied frequency of 25 Hz.or not a standing wave had been established.

The experiments were carried out using two electrocon
vection cells containing the liquid crysteb2 [19]. The first
cell was a custom-made cell with a thickness of 25n. It
was formed from two glass slides that were coated with a
layer of indium-tin oxidg(ITO), a transparent conductor. The
conductive coating was etched to form a 0.5>f5 cm
square electrode in the center of a 2.5 >th5 cm cell. The
director was aligned using a rubbed polyimide. The secon
cell was a commercial cell obtained from EHC, L{&0].
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FIG. 3. Transition to standing waves fer —0.054. Below the

) ] curve, the system is uniform. Above the curve, the state of the

FIG. 1. Four images of the pattern in @ 0.6 .6 mm re-  gystem is standing rolls. The symbols are the experimental values.
gion of the cell. The bar irfc) represents 0.2 mnta) An image of  The solid line is a fit to the expected cundd= €2+ (2 ry) 3(F*
the cell ate=0.03 and no modulation. The image has been Fourier_t /2y2 | this casef* =0.162, which is the Hopf frequency of
filtered so that only the fundamental mode remains. Images the system.
through(d) are three images from a time series taker-a.036
and b=0.04. The images are 0.9 s apart and have also bee{)
Fourier-filtered. The modulation frequency was 0.694 Hz, which
corresponds to twice the Hopf frequency. These images |IIustrat
the standing-wave nature of the pattern.

alue of e=0.03 and no modulation. Figuresbl—1(d) are
three images taken 0.9 s apart of the standing-wave state at
=0.036,b=0.04, andf,,=2f;,. The time between the im-
ages was chosen to highlight the relative change in phase
that is characteristic of a standing wave as one crosses the
minimum in intensity. For example, the intensities in the
Figure 1 is a comparison of the typical pattern in thelower right corner in Fig. () are opposite those in Fig(d).
region where spatiotemporal chaos exists and the standing- Figure 2 summarizes the range of existence of the
wave pattern that is stabilized by the modulation. Figug 1 Standing-wave patterns when a modulation of twice the Hopf

is a single snapshot of the state of spatiotemporal chaos atfeequency is used. The solid symbols axds are the loca-
tion of the transition to standing waves as measured by in-

0.06 creasinge. The open symbols and the’s are the location of

Ill. EXPERIMENT RESULTS

I ] the transition to standing waves as measured by decreasing
0.05 | . e. In the region above and between the two solid lines, the
- pattern is composed of uniform standing rolls. As a check on
0.04 | . the stability of the standing rolls, two runs were made at
I 1 fixed b. For these runse was increased in steps of 0.005,
o %03F T with a waiting time of 5 min per step. One run was kat
[ =0.02 and the other was bt=0.05. For the entire range of
0.02 - T € within the boundaries, only uniform standing rolls were
0.01 [ ] observed at these two values lof
ool 0 \® . T
-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 034F . s
8 n
~ 032} Spgm = -
FIG. 2. The symbols give the location of the transition to stand- £ "a au
ing waves as a function of modulation strengthnd reduced con- - 0.30 - -
trol parametee. The solid symbols an&’s are for increasing the 2 . "
value ofb. The open symbols and the’s are for decreasing the g
value ofb. The difference between the symbols is described in the g 028 ]
text. Fore<O0, there is no pattern present below the symbols, and a =
spatially uniform pattern exists above the symbols. EpiO, the 0.26 - .
state of spatiotemporal chaos exists below the symbols. Above the P N S E—
symbols, the system is phase-locked to the modulation, and a state 000 001 002 003 004 005
of standing rolls exists. For negatiee the solid line is the expected e

onset based on coupled complex Ginzburg-Landau equatns,
= e. For positivee, the solid line is the curvb=0.57¢—0.006 and FIG. 4. Measured frequency of the pattern as a functioa. df
provides a guide to the eye for the transition values. illustrates the decrease in the pattern frequency with increasing
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1.4 poses of Fig. 2, the onset was taken to be the point where the
12 patches of standing rolls had a size on the order of 18 wave-
lengths.
1.0F A better measure of the transition for positiggs to use
o8l the point at which the pattern becomes frequency-locked to
o the modulation frequency. This boundary is given by ¥is
oW 06 and the+'s in Fig. 2. Figure 4 shows the plot of the pattern
T o4k frequency as a function of in the absence of modulation.
From this, one can see that it is easy to distinguish the locked
0.2F and unlocked patterns far>0.01, as the frequency of the
0.0 pattern differs significantly from the Hopf frequency. With
PR S S TR W - this definition of the transition, there is no measurable hys-
-0.04 -0.02 0.00 0.02 0.04 0.06 0.08 teresis.

[f’_fm/2] (Hz) Figure 5 shows the effect of varying the modulation fre-
quency for positivee. As with negativee, the solid line is a

FIG. 5. Transition to standing waves fer=0.03. Below the fit to a parabola. In this case, the parabola is centered on the
curve, the system exhibits spatiotemporal chaos. Above the curvdtequency of the unmodulated pattern, not the Hopf fre-
the system is phase-locked to the modulation frequency. The synguency. Also, when f(* —f,/2)>0.04, the standing-wave
bols are the experimental values. The solid line is a fibfeea  pattern at the onset is standing squares. This is illustrated in
+b(f*—f/2)% In this case,f*=0.305 Hz, which is the fre- Fig. 6. For these images, the modulation frequency was
quency of the pattern at=0.03. In contrast, the Hopf frequency is 0.472 Hz, and the unmodulated pattern had a frequency of
0.34 Hz. Forf* — /2| <0.04, the transition is directly to standing (0.305 Hz. In this range off¢ —f./2), increasing leads to
rolls. For (f* —f,,/2)>0.04, the transition is initially to standing g secondary transition from the standing rectangles to stand-
rectangles, and there is a secondary transition to standing rolls. ing rolls.

I made a qualitative survey of the behavior as a function

For negative values o, the behavior of the system is of the driving frequency. By increasing the driving fre-
straightforward. The system makes a transition directly fronmuency, one decreases the ang@lbetween the wave vector
a uniform state to a state of frequency-locked standingf the pattern and the undistorted director orientation. For
waves. The pattern consists of either standing zig rolls opur system, the same qualitative behavior was observed for
standing zag rolls, and never the superposition. The pattern applied frequencies up to 80 Hz. For 80 H¥=10°. For
also frequency-locked to half the modulation frequency. Asmodulation at twice the Hopf frequency, a standing-roll pat-
shown in Fig. 2, within the resolution used here, there istern is observed. A more detailed study of the effects of
essentially no hysteresis in the transition. varying 6 will be the subject of future work.

Figure 3 shows the behavior of the system when the The local temporal behavior of the standing-roll state is
modulation frequency is varied away from twice the Hopfextremely regular. This is shown in Fig. 7. Each plot is a
frequency at negative. The solid squares represent the on-time series of the local amplitude. The amplitude is mea-
set to standing waves, and the solid line is a fit to a parabolesured every 2 min, with the initial point of the time series
In this case, the parabola is centered on the Hopf frequencyaken 10 min after the modulation is applied. Figuta) Ts a

For positive values o€, the situation is more complicated plot of the local amplitude as a function of time far
because the ground state is the state of spatiotemporal chags0.01 and no modulation. The amplitudes of the right-
In this case, | have measured the transition in two differentraveling zig rolls, left-traveling zig rolls, and left-traveling
ways. First, | have considered the onset to standing rollszag rolls have been shifted from their true values by 0.015,
These are the solid and open squares in Fig. 2. When stef-01, and—0.005, respectively. These shifts clarify the an-
ping down in e, the transition from standing rolls to the ticorrelations present between the various modes and the ir-
disordered state was easily identified. However, because @égular variation in time. This behavior has been reported
the spatial disorder, whea is increased, the onset to spa- previously [5]. Figure 7b) is the local amplitude fore
tially uniform standing rolls is less well-defined. For the pur- =0.01, b=0.02, andf,,=2f,,. This figure shows both the

A

FIG. 6. Three images from a time series takera0.036,b=0.04, andf,=0.472. This corresponds td*{— f,/2)=0.069 in Fig. 5.
The images cover a region that is 0.6 .6 mm and are 0.9 s apart. The bar(y represents 0.2 mm. The images have been
Fourier-filtered so that only the fundamental mode is present. These images illustrate the standing-wave nature of the pattern.
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0.03 L@ ' 'xf)( R )'; X ¥ x| values aree=—0.058+ 0.005, 74=0.229-0.004 s, and,
. x ”ix’ﬂi 7\/\1\7%%1\& /\f\/\/&/\ﬂ =0.162-0.01 Hz. For comparison, the measured values of
0.02 f‘\x/\ /x/\xl A pY = these parameters aree=—0.054+0.002, 74=0.18
o SLELIY /n\%gwn +0.05 s, and,=0.164+0.005 Hz.
s "7 R The nature of the standing-wave pattern depends on the
v 0.01 2 R M@é THE T nonlinear coefficients in the amplitude equations. The fact
< A %ﬁz&ﬁﬂj A A’fﬂffd h}j ﬁfi that | observe standing rolls at the onset has important con-
g 000 SO BV & T sequences. First, the coupling coefficient between zig and
5 003}® . zag rolls traveling in the same direction has been calculated
Y Fewidsfthadirnd mm s oo [8]. Based on this calculation, it is likely that standing rect-
5 0.02 | 4 angles are the stable state for the parameter range in my
= experiments. However, the condition for the stability of
g 0.01 } J standing rolls does involve all of the nonlinear coefficients
a N [17], and standing rolls are not ruled out by the calculations
000k | . \ \ X L of Ref. [8]. Therefore, these experiments highlight the need
0 20 40 60 80 100 120 140 for a determination of all of the nonlinear coefficients before

gquantitative comparisons between amplitude equations and
the experiments are possible. On the other hand, in the ab-
FIG. 7. (a) Plot of the amplitudes of the right-traveling zig rolls sence of theoretical calculations, the temporal modulation
(X), left-traveling zig rolls (), right-traveling zag rolls@), and  experiments provide a means to determine the coefficients
left-traveling zag rolls (\). The system was a¢=0.01 andb experimentally.
=0%. The amplitudes have been shifted as described in the text. The results for positivee are in qualitative agreement
(b) Plot of the amplitudes of the right-traveling zig rollx§, left-  with the predictions of Ref.17]. The critical value ot for
traveling zig rolls (J), right-traveling zag rolls ©), and left-  the transition to standing waves is lineardror fixed f,,. |
traveling zag rolls (o). The system was a&=0.01 andb  find b=0.577%—0.006(the solid line in Fig. 2 This is not
=2.0%. surprising given that the ground state of the experimental
system is a state of spatiotemporal chaos. This pattern can
regular temporal behavior and the establishment of standingnly be described by amplitude equations that include spatial
rolls (the zag amplitude has gone to zero derivatives, and these are not included in R&7). Also, the
The development of the local, temporal order generallyunknown coefficients of the nonlinear terms are important.
occurred in under a few minutes. In contrast, the spatial or- The other qualitative agreement with REE7] is the be-
dering involves extremely long time scales. It can take up tdhavior as a function of modulation frequency. The critical
2 h for the standing-roll domains to reach sizes on order ofalues ofb? are quadratic in f* — f,/2) for fixed e. How-
the system size. However, upon removal of the modulationever, it is clear from Fig. 5 that* is the frequency of the
the disorder develops in a few minutes. This difference inunmodulated pattern for the fixed value ef and not the
time scales is reflected in Fig. 2. One sees that there is estopf frequency. This is due to the shift in frequency wiéth
sentially no difference between the transition to a frequencythat is illustrated in Fig. 4.
locked state and the transition to standing waves measured An additional feature of the behavior at positi¢ethat
by decreasing. However, standing rolls of a particular size requires a theoretical explanation is the regular dynamics of
occurred at values df slightly above the transition defined the standing-wave state. Though an incomplete description,
by frequency locking. This is easily understood in terms ofthe existing amplitude equation calculations suggest that the
the 10-min waiting time used when steppibgClearly, the  unmodulated state is Benjamin-Feir unstable for all wave
details of the spatial ordering and the multiple time scalessumbers[8]. This provides a possible explanation for the
involved are an interesting problem. However, it is outsidespatiotemporal chaos at onset. From the fact that the modu-
the scope of this paper and will be the subject of future worklated state exhibits regular dynamics, one can infer that the
standing rolls are Benjamin-Feir stable. This situation is the
opposite of that previously observed in electroconvection in
IV. DISCUSSION a different nematic liquid crystdll5]. In that system, the
The transitions for negative can be directly compared unmodulated state was stablg. Fpr high enough modulation,
with predictions of the relevant coupled amplitude equationgh® modulated state was Benjamin-Feir unstable and resulted
[17]. | find excellent agreement between the measured onsé? irregular dynamicg15]. The behavior in that case agreed
of standing waves and the predictions of R&f7]. The onset well with calcula}nons pas&_ed on amplltut_je.equatlons t_hat in-
to standing waves should occur wher: | x|. Here the real cluded the spatial derivativgdd5,22. A similar calculation

part of 41 is just e and the imaginary part of. is 27 r(f* is_ needgd for the system r_eported on here. In par'ticu'lar, it
—f,./2), wherery=y,d2/(m?K,,) is the director relaxation will be important to d_et_erm!ne if te_mporal modulation is a

time. Herey, is a rotational viscosity ant,; is the splay _general_ _method_ for eliminating spatiotemporal chaos, or if it
elastic constant of the director. For a modulation frequency® SPecific to this system.

equal to twice the Hopf frequency, the onset is given by the

e b- <. Thisis the solic fine shown in Fig. 1. For the more ACKNOWLEDGMENTS
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