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Temporal modulation of the control parameter in electroconvection
in the nematic liquid crystal I 52

Michael Dennin
Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697-4575

~Received 5 July 2000!

I report on the effects of a periodic modulation of the control parameter on electroconvection in the nematic
liquid crystalI52. Without modulation, the primary bifurcation from the uniform state is a direct transition to
a state of spatiotemporal chaos. This state is the result of the interaction of four degenerate traveling modes:
right and left zig and zag rolls. Periodic modulations of the driving voltage at approximately twice the traveling
frequency are used. For a large enough modulation amplitude, standing waves that consist of only zig or zag
rolls are stabilized. The standing waves exhibit regular behavior in space and time. Therefore, modulation of
the control parameter represents a method of eliminating spatiotemporal chaos. As the modulation frequency is
varied away from twice the traveling frequency, standing waves that are a superposition of zig and zag rolls,
i.e., standing rectangles, are observed. These results are compared with existing predictions based on coupled
complex Ginzburg-Landau equations.

PACS number~s!: 05.45.Jn, 47.54.1r
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I. INTRODUCTION

When a spatially extended system is driven far from eq
librium, a series of transitions occurs as a function of
external driving force, or control parameter@1#. Under well-
controlled conditions, the initial transition is from a spatia
uniform state to a state with periodic spatial variation
called a pattern. As the control parameter is increase
sequence of instabilities occurs that produces increasi
complex spatiotemporal patterns. Ultimately, the system
comes fully turbulent. States of spatiotemporal chaos fo
an interesting class of patterns@1,2#. Loosely speaking, spa
tiotemporal chaos refers to deterministic patterns that pos
apparently random variation in space and time. They ge
ally exhibit an underlying periodicity but are characteriz
by a finite correlation length and correlation time. Since th
discovery in fluid dynamical systems@3#, states of spatiotem
poral chaos have been observed in a wide range of syst
including Rayleigh-Be´nard convection, Faraday instabilitie
Taylor-Couette flow, electroconvection in nematic liqu
crystals, lasers, and chemical reactions@1,2#. Despite the
ubiquitous nature of the phenomenon, a full understandin
spatiotemporal chaos remains one of the outstanding p
lems in nonlinear dynamics.

One of the challenges facing the study of spatiotempo
chaos is the difficulty associated with characterizing the
namics@1#. Because the systems are spatially extended,
are inherently high dimensional. This precludes the use
many of the successful techniques developed to study l
dimensional chaos in dynamical systems@4#. Also, most ex-
amples of spatiotemporal chaos occur at sufficiently la
values of the control parameter that weakly nonlinear te
niques, such as amplitude equations, are only applicabl
phenomenological models, if at all. The work reported h
uses a state of spatiotemporal chaos that occurs in ele
convection inI52 @5#. In contrast to other systems, this sta
does occur in the weakly nonlinear regime where quant
tive comparison between theory and experiment is poss
PRE 621063-651X/2000/62~6!/7842~6!/$15.00
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A fundamental theory of electroconvection, the weak el
trolyte model@6,7#, exists and provides the necessary start
point for aquantitativederivation of the relevant amplitud
equations@8#. Therefore, this system is an ideal candidate
studying spatiotemporal chaos. However, currently only t
of the four necessary amplitude equations have been der
and only qualitative predictions exist@8#. In this work, I use
temporal modulation as a probe of the system’s dynam
This provides both a test of the existing amplitude equat
description and a means of guiding future experiments
calculations.

For electroconvection@9,10#, a nematic liquid crystal is
placed between two properly treated glass plates so tha
director is everywhere parallel to the plates and along a c
sen axis. A nematic liquid crystal is a fluid in which th
molecules have orientational order, and the director refer
the axis parallel to the average alignment of the molecu
@11#. The liquid crystal is doped with ionic impurities, and a
ac voltage is applied across the sample using transpa
electrodes on the glass plates. Above a critical value of
applied voltage, there exists a transition from uniform co
duction to convection rolls, with a corresponding period
variation of the director and concentration of ionic impu
ties. Because the system is anisotropic, the patterns ca
characterized by the angleu between the director and th
wave vector of the pattern. Electroconvection in the nema
liquid crystal I52 exhibits a forward Hopf bifurcation to ob
lique rolls @5#. A Hopf bifurcation is a transition to a
traveling-wave pattern, and oblique rolls correspond to p
terns where 0°,u,90° @9#. At the onset, because the dire
tor only defines an axis and not a positive direction, sta
with wave vectors of equal magnitude but with anglesu and
p2u are degenerate and referred to as zig and zag r
respectively. The state close to onset that is studied h
consists of four modes: right- and left-traveling zig and z
rolls @5#. It is the interaction of these four modes that resu
in spatiotemporal chaos.

Resonant modulation of the control parameter in a sys
7842 ©2000 The American Physical Society
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PRE 62 7843TEMPORAL MODULATION OF THE CONTROL . . .
with a Hopf bifurcation is known to stabilize standing wav
for large enough modulation strength@12–17#. However, it
has not been applied previously to a state of spatiotemp
chaos. There are three main questions addressed in this w
First, I have made a survey of the range of existence
standing-wave patterns and their qualitative features fo
reasonable set of values of the applied voltage, applied
quency, the modulation strength, and the modulation
quency. Second, there are three possible standing-wave
lutions: standing rolls~only zig or zag rolls are present!,
standing rectangles~superimposed zig and zag rolls wit
equal amplitude!, and standing cross rolls~zig and zag rolls
with different amplitudes! @17#. I will show that the standing-
wave states are generally standing rolls, but that stand
rectangles can be observed. Finally, I will demonstrate
the standing-roll states are temporally regular and that t
eventually become spatially uniform. Therefore, this is
example of the elimination of spatiotemporal chaos and p
vides an interesting contrast to systems where temp
modulation produces irregular behavior in an otherwise re
lar system@15,18#.

The rest of the paper is organized as follows. Section
provides the details of the experimental techniques. Sec
III presents the experimental results. In this section, I w
report separately on the results of applying modulations
the control parameter below and above the critical volta
for the onset of convection in the absence of modulatio
Section IV will discuss the relationship between these res
and existing predictions of relevant amplitude equations.

II. EXPERIMENT DETAILS

The experiments were carried out using two electroc
vection cells containing the liquid crystalI52 @19#. The first
cell was a custom-made cell with a thickness of 25mm. It
was formed from two glass slides that were coated wit
layer of indium-tin oxide~ITO!, a transparent conductor. Th
conductive coating was etched to form a 0.5 cm30.5 cm
square electrode in the center of a 2.5 cm32.5 cm cell. The
director was aligned using a rubbed polyimide. The sec
cell was a commercial cell obtained from EHC, Ltd.@20#.
This cell had a thickness of 23mm. The electrode was a
1.0 cm31.0 cm area of ITO in a 2.5 cm32.5 cm cell.
The alignment was also due to a rubbed polyimide coat
For both cells, there was some forcing of a pattern due
fringing fields at the edge of the electrodes. However, a
gion existed in the middle of each cell where convect
started spontaneously. All measurements were made in
region of the cell to minimize boundary effects.

The main differences between the two samples were
values of the critical voltage and the Hopf frequency due
differences in iodine doping. The custom sample was fil
with I52 that had been doped with 6.3% by weight molec
lar I 2 two months prior to filling the cell. The commercia
cell was filled with I52 that had been doped with 6% b
weight molecularI 2 seventeen months prior to filling. Th
custom cell was aged for five months after filling befo
experiments were started, and the commercial cell was a
for one month after filling. For the custom cell, the critic
voltage was approximately 21 V and the Hopf frequency w
approximately 0.125 Hz at an applied frequency of 25 H
al
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For the commercial cell, the critical voltage was appro
mately 15 V and the Hopf frequency was approximately 0
Hz at an applied frequency of 25 Hz.

It is known for electroconvection inI52 that the level of
iodine in the sample will drift in time. This results in drifts i
the critical voltage and the Hopf frequency. Because of t
drift, the following protocols were used. The critical voltag
and Hopf frequency were measured before and after ev
set of measurements. The modulated voltage had the foll
ing form: V(t)5@Vo1Vm cos(vmt)#cos(Vt). The two main
dimensionless control parameters aree5Vo

2/Vc
221 and b

5Vm /Vc . Here Vc is the critical voltage for the onset o
convection in the absence of modulation. The drift inVc was
linear in time and corresponded to a drift ine of 0.001/Hr.
This drift is accounted for in all reported values ofb ande.
The modulation frequency will be discussed in terms of
shift from resonance (f * 2 f m/2), wheref m is the modulation
frequency andf * is the natural frequency of the pattern. F
e,0, f * is the Hopf frequencyf h , and fore.0, it is the
frequency of the pattern in the absence of modulation. D
spite the differences between the two cells and the drif
time of Vc , the behavior as a function ofb, e, and (f *
2 f m/2) is completely reproducible. The sample temperat
was held constant at either 4060.002°C or 4260.002°C.
The latter temperature was used after the total drift inVc at
40°C had exceeded approximately 1 V.

Images were taken using a standard shadowgraph me
@21# and are presented here with the undistorted direc
aligned in the horizontal direction. Because of the we
known nonlinear effects of the shadowgraph method@21#,
the images have been Fourier-filtered so that only the fun
mental modes are present. This is essential for highligh
the standing-wave character of the modulated pattern.

The frequency of the pattern was determined by tak
the Fourier transform of a time series of 32 images. T
images typically covered a spatial area containing 18 ro
though smaller regions of only seven rolls were also us
The time between images was chosen so that the time s
covered four to six periods of the fundamental frequency

For the measurements of the dynamics of the local am
tude of each mode, a time series of 32 images was used.
time between images was chosen so that the series cons
of four cycles of the pattern. Each image covered a spa
area of approximately seven wavelengths. The modu
squared of the space-time Fourier transform of the ser
S(k,v), was used to compute the amplitude of each mo
The power in each mode, right- and left-traveling zig and z
rolls, was determined by summingS(k,v) over a 535 pixel
grid in wave number space and 5 pixel window in frequen
space. The grid and window were centered on the pea
S(k,v) that corresponded to the mode of interest. The a
plitude of each mode is the square root of the power.

For measurements of the onset of standing waves,e was
fixed and the value ofb was either stepped up or down i
increments of 0.005. At each step, the system was eq
brated for 10 min before a time series of images was tak
The time series of images were used to determine if
pattern was frequency-locked to the modulation and whe
or not a standing wave had been established.
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7844 PRE 62MICHAEL DENNIN
III. EXPERIMENT RESULTS

Figure 1 is a comparison of the typical pattern in t
region where spatiotemporal chaos exists and the stand
wave pattern that is stabilized by the modulation. Figure 1~a!
is a single snapshot of the state of spatiotemporal chaos

FIG. 2. The symbols give the location of the transition to sta
ing waves as a function of modulation strengthb and reduced con-
trol parametere. The solid symbols and3 ’s are for increasing the
value of b. The open symbols and the1 ’s are for decreasing the
value ofb. The difference between the symbols is described in
text. Fore,0, there is no pattern present below the symbols, an
spatially uniform pattern exists above the symbols. Fore.0, the
state of spatiotemporal chaos exists below the symbols. Above
symbols, the system is phase-locked to the modulation, and a
of standing rolls exists. For negativee, the solid line is the expected
onset based on coupled complex Ginzburg-Landau equationb
5e. For positivee, the solid line is the curveb50.57e20.006 and
provides a guide to the eye for the transition values.

FIG. 1. Four images of the pattern in a 0.6 mm30.6 mm re-
gion of the cell. The bar in~c! represents 0.2 mm.~a! An image of
the cell ate50.03 and no modulation. The image has been Fou
filtered so that only the fundamental mode remains. Images~b!
through~d! are three images from a time series taken ate50.036
and b50.04. The images are 0.9 s apart and have also b
Fourier-filtered. The modulation frequency was 0.694 Hz, wh
corresponds to twice the Hopf frequency. These images illust
the standing-wave nature of the pattern.
g-

t a

value of e50.03 and no modulation. Figures 1~b!–1~d! are
three images taken 0.9 s apart of the standing-wave sta
e50.036,b50.04, andf m52 f h . The time between the im
ages was chosen to highlight the relative change in ph
that is characteristic of a standing wave as one crosses
minimum in intensity. For example, the intensities in t
lower right corner in Fig. 1~b! are opposite those in Fig. 1~d!.

Figure 2 summarizes the range of existence of
standing-wave patterns when a modulation of twice the H
frequency is used. The solid symbols and3 ’s are the loca-
tion of the transition to standing waves as measured by
creasinge. The open symbols and the1 ’s are the location of
the transition to standing waves as measured by decrea
e. In the region above and between the two solid lines,
pattern is composed of uniform standing rolls. As a check
the stability of the standing rolls, two runs were made
fixed b. For these runs,e was increased in steps of 0.00
with a waiting time of 5 min per step. One run was atb
50.02 and the other was atb50.05. For the entire range o
e within the boundaries, only uniform standing rolls we
observed at these two values ofb.

-
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FIG. 3. Transition to standing waves fore520.054. Below the
curve, the system is uniform. Above the curve, the state of
system is standing rolls. The symbols are the experimental val
The solid line is a fit to the expected curve:b25e21(2ptd)2( f *
2 f m/2)2. In this case,f * 50.162, which is the Hopf frequency o
the system.

FIG. 4. Measured frequency of the pattern as a function ofe. It
illustrates the decrease in the pattern frequency with increasinge.
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PRE 62 7845TEMPORAL MODULATION OF THE CONTROL . . .
For negative values ofe, the behavior of the system i
straightforward. The system makes a transition directly fr
a uniform state to a state of frequency-locked stand
waves. The pattern consists of either standing zig rolls
standing zag rolls, and never the superposition. The patte
also frequency-locked to half the modulation frequency.
shown in Fig. 2, within the resolution used here, there
essentially no hysteresis in the transition.

Figure 3 shows the behavior of the system when
modulation frequency is varied away from twice the Ho
frequency at negativee. The solid squares represent the o
set to standing waves, and the solid line is a fit to a parab
In this case, the parabola is centered on the Hopf freque

For positive values ofe, the situation is more complicate
because the ground state is the state of spatiotemporal c
In this case, I have measured the transition in two differ
ways. First, I have considered the onset to standing ro
These are the solid and open squares in Fig. 2. When s
ping down in e, the transition from standing rolls to th
disordered state was easily identified. However, becaus
the spatial disorder, whene is increased, the onset to sp
tially uniform standing rolls is less well-defined. For the pu

FIG. 5. Transition to standing waves fore50.03. Below the
curve, the system exhibits spatiotemporal chaos. Above the cu
the system is phase-locked to the modulation frequency. The s
bols are the experimental values. The solid line is a fit tob25a
1b( f * 2 f m/2)2. In this case,f * 50.305 Hz, which is the fre-
quency of the pattern ate50.03. In contrast, the Hopf frequency
0.34 Hz. Foru f * 2 f m/2u,0.04, the transition is directly to standin
rolls. For (f * 2 f m/2).0.04, the transition is initially to standing
rectangles, and there is a secondary transition to standing rolls
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poses of Fig. 2, the onset was taken to be the point where
patches of standing rolls had a size on the order of 18 wa
lengths.

A better measure of the transition for positivee is to use
the point at which the pattern becomes frequency-locked
the modulation frequency. This boundary is given by the3 ’s
and the1 ’s in Fig. 2. Figure 4 shows the plot of the patte
frequency as a function ofe in the absence of modulation
From this, one can see that it is easy to distinguish the loc
and unlocked patterns fore.0.01, as the frequency of th
pattern differs significantly from the Hopf frequency. Wit
this definition of the transition, there is no measurable h
teresis.

Figure 5 shows the effect of varying the modulation fr
quency for positivee. As with negativee, the solid line is a
fit to a parabola. In this case, the parabola is centered on
frequency of the unmodulated pattern, not the Hopf f
quency. Also, when (f * 2 f m/2).0.04, the standing-wave
pattern at the onset is standing squares. This is illustrate
Fig. 6. For these images, the modulation frequency w
0.472 Hz, and the unmodulated pattern had a frequenc
0.305 Hz. In this range of (f * 2 f m/2), increasingb leads to
a secondary transition from the standing rectangles to sta
ing rolls.

I made a qualitative survey of the behavior as a funct
of the driving frequency. By increasing the driving fre
quency, one decreases the angleu between the wave vecto
of the pattern and the undistorted director orientation. F
our system, the same qualitative behavior was observed
applied frequencies up to 80 Hz. For 80 Hz,u510°. For
modulation at twice the Hopf frequency, a standing-roll p
tern is observed. A more detailed study of the effects
varying u will be the subject of future work.

The local temporal behavior of the standing-roll state
extremely regular. This is shown in Fig. 7. Each plot is
time series of the local amplitude. The amplitude is me
sured every 2 min, with the initial point of the time serie
taken 10 min after the modulation is applied. Figure 7~a! is a
plot of the local amplitude as a function of time fore
50.01 and no modulation. The amplitudes of the rig
traveling zig rolls, left-traveling zig rolls, and left-travelin
zag rolls have been shifted from their true values by 0.0
0.01, and20.005, respectively. These shifts clarify the a
ticorrelations present between the various modes and th
regular variation in time. This behavior has been repor
previously @5#. Figure 7~b! is the local amplitude fore
50.01, b50.02, andf m52 f h . This figure shows both the

e,
-

en

FIG. 6. Three images from a time series taken ate50.036,b50.04, andf m50.472. This corresponds to (f * 2 f m/2)50.069 in Fig. 5.

The images cover a region that is 0.6 mm30.6 mm and are 0.9 s apart. The bar in~b! represents 0.2 mm. The images have be
Fourier-filtered so that only the fundamental mode is present. These images illustrate the standing-wave nature of the pattern.
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7846 PRE 62MICHAEL DENNIN
regular temporal behavior and the establishment of stan
rolls ~the zag amplitude has gone to zero!.

The development of the local, temporal order genera
occurred in under a few minutes. In contrast, the spatial
dering involves extremely long time scales. It can take up
2 h for the standing-roll domains to reach sizes on orde
the system size. However, upon removal of the modulat
the disorder develops in a few minutes. This difference
time scales is reflected in Fig. 2. One sees that there is
sentially no difference between the transition to a frequen
locked state and the transition to standing waves meas
by decreasinge. However, standing rolls of a particular siz
occurred at values ofb slightly above the transition define
by frequency locking. This is easily understood in terms
the 10-min waiting time used when steppingb. Clearly, the
details of the spatial ordering and the multiple time sca
involved are an interesting problem. However, it is outs
the scope of this paper and will be the subject of future wo

IV. DISCUSSION

The transitions for negativee can be directly compared
with predictions of the relevant coupled amplitude equatio
@17#. I find excellent agreement between the measured o
of standing waves and the predictions of Ref.@17#. The onset
to standing waves should occur whenb5umu. Here the real
part of m is just e and the imaginary part ofm is 2ptd( f *
2 f m/2), wheretd5g1d2/(p2K11) is the director relaxation
time. Hereg1 is a rotational viscosity andK11 is the splay
elastic constant of the director. For a modulation freque
equal to twice the Hopf frequency, the onset is given by
line b5e. This is the solid line shown in Fig. 1. For the mo
general case, one hasb25e21(2ptd)2( f h2 f m/2)2. The
solid line in Fig. 3 is a fit to this equation. The resultin

FIG. 7. ~a! Plot of the amplitudes of the right-traveling zig rol
(3), left-traveling zig rolls (h), right-traveling zag rolls (s), and
left-traveling zag rolls (n). The system was ate50.01 andb
50%. The amplitudes have been shifted as described in the
~b! Plot of the amplitudes of the right-traveling zig rolls (3), left-
traveling zig rolls (h), right-traveling zag rolls (s), and left-
traveling zag rolls (n). The system was ate50.01 and b
52.0%.
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values aree520.05860.005, td50.22960.004 s, andf h

50.16260.01 Hz. For comparison, the measured values
these parameters aree520.05460.002, td50.18
60.05 s, andf h50.16460.005 Hz.

The nature of the standing-wave pattern depends on
nonlinear coefficients in the amplitude equations. The f
that I observe standing rolls at the onset has important c
sequences. First, the coupling coefficient between zig
zag rolls traveling in the same direction has been calcula
@8#. Based on this calculation, it is likely that standing re
angles are the stable state for the parameter range in
experiments. However, the condition for the stability
standing rolls does involve all of the nonlinear coefficien
@17#, and standing rolls are not ruled out by the calculatio
of Ref. @8#. Therefore, these experiments highlight the ne
for a determination of all of the nonlinear coefficients befo
quantitative comparisons between amplitude equations
the experiments are possible. On the other hand, in the
sence of theoretical calculations, the temporal modulat
experiments provide a means to determine the coefficie
experimentally.

The results for positivee are in qualitative agreemen
with the predictions of Ref.@17#. The critical value ofb for
the transition to standing waves is linear ine for fixed f m . I
find b50.577e20.006~the solid line in Fig. 2!. This is not
surprising given that the ground state of the experimen
system is a state of spatiotemporal chaos. This pattern
only be described by amplitude equations that include spa
derivatives, and these are not included in Ref.@17#. Also, the
unknown coefficients of the nonlinear terms are importan

The other qualitative agreement with Ref.@17# is the be-
havior as a function of modulation frequency. The critic
values ofb2 are quadratic in (f * 2 f m/2) for fixed e. How-
ever, it is clear from Fig. 5 thatf * is the frequency of the
unmodulated pattern for the fixed value ofe, and not the
Hopf frequency. This is due to the shift in frequency withe
that is illustrated in Fig. 4.

An additional feature of the behavior at positivee that
requires a theoretical explanation is the regular dynamic
the standing-wave state. Though an incomplete descript
the existing amplitude equation calculations suggest that
unmodulated state is Benjamin-Feir unstable for all wa
numbers@8#. This provides a possible explanation for th
spatiotemporal chaos at onset. From the fact that the mo
lated state exhibits regular dynamics, one can infer that
standing rolls are Benjamin-Feir stable. This situation is
opposite of that previously observed in electroconvection
a different nematic liquid crystal@15#. In that system, the
unmodulated state was stable. For high enough modula
the modulated state was Benjamin-Feir unstable and resu
in irregular dynamics@15#. The behavior in that case agree
well with calculations based on amplitude equations that
cluded the spatial derivatives@15,22#. A similar calculation
is needed for the system reported on here. In particula
will be important to determine if temporal modulation is
general method for eliminating spatiotemporal chaos, or
is specific to this system.
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